
431

 32 Conclusion: The Master Programmer

Chapter
Objectives

This chapter provides a summary and discussion of the primary idioms and design
patterns presented in our book.

Chapter
Contents

32.1 Paradigm-Based Abstractions and Idioms
32.2 Programming as a Tool for Exploring Problem Domains
32.3 Programming as a Social Activity
32.4 Final Thoughts

 32.1 Language Paradigm-Based Abstractions and Idioms

 In the Introduction to this book, we stated that we wanted to do more
than simply demonstrate the implementation of key AI algorithms in some
of the major languages used in the field. We also wanted to explore the
ways that the problems we try to solve, the programming languages we
create to help in their solution, and the patterns and idioms that arise in the
practice of AI programming have shaped each other. We will conclude
with a few observations on these themes.

More than anything else, the history of programming languages is a history
of increasingly powerful, ever more diverse abstraction mechanisms. Lisp,
the oldest of the languages we have explored, remains one of the most
dramatic examples of this progression. Although procedural in nature, Lisp
was arguably the first to abstract procedural programming from such
patterns as explicit branching, common memory blocks, parameter passing
by reference, pointer arithmetic, global scoping of functions and variables,
and other structures that more or less reflect the underlying machine
architecture. By adopting a model based on the theory of recursive
functions, Lisp provides programmers with a cleaner semantics, including
recursive control structures, principled variable scoping mechanisms, and a
variety of structures for implementing symbolic data structures.

Like Lisp, Prolog bases its abstraction on a mathematical theory: in this
case, formal logic and resolution theorem proving. This allows Prolog to
abstract out procedural semantics almost completely (the left to right
handling of goals and such pragmatic mechanisms as the cut are necessary
exceptions). The result is a declarative semantics that allows programmers
to view programs as sets of constraints on problem solutions. Also,
because grammars naturally take the form of rules, Prolog has not only
proven its value in natural language processing applications, as well as a
tool for manipulating formal languages, such as compilers or interpreters.

Drawing in part on the lessons of these earlier languages, object-oriented
languages, such as Java, offer an extremely rich set of abstractions that
support the idea of organizing even the most ordinary program as a model

432 Part V: Model Building and the Master Programmer

of its application domain. These abstractions include class definitions,
inheritance, abstract classes, interfaces, packages, overriding of methods,
and generic collections. In particular, it is interesting to note the close
historical relationship between Lisp and the development of object
languages. Although Smalltalk was the first “pure” object-oriented
language, it was closely followed by many object-oriented Lisp dialects.
This relationship is natural, since Lisp laid a foundation for object-
orientation through such features as the ability to manipulate functions as
s-expressions, and the control over evaluation it gives the programmer.
Java has continued this development, and is particularly notable for
providing powerful software engineering support through development
environments such as Eclipse, and the large number of packages it
provides for user data structures, network programming, user interface
implementation, web-based implementation, Artificial Intelligence, and
other aspects of application development.

In addition to – or perhaps because of – their underlying semantic models,
all these languages support more general forms of abstraction. The
organization of programs around abstract data types, “bundles” of data
structures and operations on them, is a common device used by good
programmers – no matter what language they are using. Meta-linguistic
abstraction is another technique that is particularly important to Artificial
Intelligence programming. The complexity of AI problems clearly requires
powerful forms of problem decomposition, but the ill-formed nature of
many research problems defies such common techniques as top-down
decomposition. Meta-linguistic abstraction addresses this conundrum by
enabling programmers to design languages that are tailored to solving
specific problems. It tames hard problems by abstracting their key features
into a meta language, rather than decomposing them into parts. The
general search algorithms, expert system shells, learning frameworks,
semantic networks, and other techniques illustrated in this book are all
examples of meta-linguistic abstraction.

This diversity of abstraction mechanisms across languages underlies a
central theme of this book: the relationship between programming
languages and the idioms of their use. Each language suggests a set of
natural ways of achieving common programming tasks. These are refined
through practice and shared throughout the programmer community
through examples, mentoring, conferences, books, and all the mechanisms
through which any language idiom spreads. Lisp’s use of lists and
CAR/CDR recursion to construct complex data structures is one of that
language’s central idioms; indeed, it is almost emblematic of the language.
Similarly, the use of rule ordering in Prolog, with non-recursive terminating
statements preceding recursive rules appearing throughout Prolog
programs is on of that language’s key idioms. Object-oriented languages
rely upon a particularly rich set of idioms and underscore the importance
of understanding and using them properly.

Java, for example, adopted the C programming language syntax to improve
its learnability and readability (whether or not this was good idea continues
to be passionately debated). It would be possible for a programmer to write
Java programs that consisted of a single class with a static main method

 Chapter 32 The Master Programmer 433

that called additional main methods in the class. This program might
function correctly, but it would hardly be considered a good java program.
Instead, quality Java programs distribute their functionality over relatively
large numbers of class definitions, organized into hierarchies by
inheritance, interface definitions, method overloading, etc. The goal is to
reflect the structure of the problem in the implementation of its solution.
This not only brings into focus the use of programming languages to
sharpen our thinking by building epistemological models of a problem
domain, but also supports communication among developers and with
customers by letting people draw on their understanding of the domain.

There are many reasons for the importance of idioms to good
programming. Perhaps the most obvious is that the idiomatic patterns of
language use have evolved to help with the various activities in the
software lifecycle, from program design through maintenance. Adhering to
them is important to gaining the full benefits of the language. For example,
our hypothetical “Java written as C” program would lack the
maintainability of a well-written Java program.

A further reason for adhering to accepted language idioms is for
communication. As we will discuss below, software development (at least
once we move beyond toy programs) is a fundamentally social activity. It is
not enough for our programs to be correct. We also want other
programmers to be able to read them, understand the reasons we wrote the
program as we did, and ultimately modify our code without adding bugs
due to a misunderstanding of our original intent.

Throughout the book, we have tried to communicate these idioms, and
suggested that mastering them, along with the traditional algorithms, data
structures, and languages, is an essential component of programming skill.

32.2 Programming as a Tool for Exploring Problem Domains

 Idioms are also bound up – along with the related concept of design
patterns, also discussed below – with an idea we introduced in the book’s
introduction: programming languages as tools for thinking. In the early
stages of learning to program, the greatest challenges facing the student are
in translating a software requirement, usually a homework assignment, into
a program that works correctly. As we move into professional-level
research or software development, this changes. We are seldom given clear,
stable problem statements; rather, our job is to interpret a vague customer
need or research goal and project it into a program that meets our needs.
The languages we have addressed in this book are the product of many
person-decades of theoretical development, experience, and insight. They
are not only tools for programming computers, but also for refining our
understanding of problems and their solution.

Illustrating this idea of programming languages as tools for thinking has
been one of our primary goals in writing this book. Lisp is the oldest, and
still one of the best, examples of this. The s-expression syntax is ideally
suited for constructing symbolic data structures, and, along with the basic
cons/car/cdr operations, provides an elegant foundation for structures as

434 Part V: Model Building and the Master Programmer

diverse as lists, trees, frames, networks, and other types of knowledge
representation common to Artificial Intelligence. A search of early AI
literature shows the power of s-expressions as both a basis for symbolic
computing and for communication of theoretical ideas: numerous articles
on knowledge representation, learning, reasoning, and other topics use s-
expressions to state theoretical ideas as natural science uses algebra.

Prolog continues this tradition with its use of logical representation and
declarative semantics. Logic is the classic “tool for thinking,” giving a
mathematical foundation to the disciplines of clarity, validity, and proof.
Subtler is the idea of declarative semantics, of stating constraints on a
problem solution independently of the procedural steps used to realize
those constraints. This brings a number of benefits. Prolog programs are
notoriously concise, since the mechanisms of procedural computing are
abstracted out of the logical statement of problem constraints. This
concision helps give clear formulation to the complex problems faced in
AI programming. Natural language understanding programs are the most
obvious example of this, but we also call the reader’s attention to the
relative ease of writing meta-interpreters in Prolog. This discipline of meta-
linguistic abstraction is a quintessential way a language assists in our
thinking about hard problems.

Java’s core disciplines of encapsulation, inheritance, and method extension
also reflect a heritage of AI thinking. As a tool for thinking, Java brings
these powerful disciplines to problem decomposition and representation,
metalinguistic abstraction, incremental prototyping, and other forms of
problem solving. An interesting example of the subtle influence object-
oriented programming has on our thinking can be found in comparing the
declarative semantics of Prolog with the static structure of an object-
oriented program.

Although we have no “hard” data to prove this, our work as both
engineers and teachers has convinced us that the more experienced a Java
programmer becomes, the more classes and interfaces we find in their
programs. Novice programmers seem to favor fewer classes with longer
methods, most likely because they lack the rich language of idioms and
patterns used by skilled object-oriented designers. Breaking a program
down into a larger number of objects brings several obvious benefits,
including ease of debugging and validating code, and enhanced reuse.
Another benefit of this is a shift of program semantics from procedural
code to the static structure of objects and relations in the class structure.
For example, a well-designed class hierarchy with the use of overloaded
methods can eliminate many if-then tests in the program: the class
“knows” which method to use without an explicit test. For this reason,
Java programmers frown on the use of operators like instanceof to
test explicitly for class membership: the object should exploit inheritance to
call the proper method rather than use such tests.

The analogy of this to Prolog’s declarative semantics is useful: both
techniques move program semantics from dynamic execution to static
structure. The static structure of objects or assertions can be understood by
inspection of code, rather than by stepping through executions. It can be

 Chapter 32 The Master Programmer 435

analyzed and verified in terms of things and relations, rather than the
complexities of analyzing the many paths a program can take through its
execution. And, it enhances the use of the programming language as a tool
for stating theoretical ideas: as a tool for thinking.

 32.3 Programming as a Social Activity

 As programming has matured as a discipline, we have also come to
recognize that teams usually write complex software, rather than a single
genius laboring in isolation. Both authors work in research institutions, and
are acutely aware that the complexity of the problems modern computer
science tackles makes the lone genius the exception, rather than the rule.
The most dramatic example of this is open-source software, which is built
by numerous programmers laboring around the world. To support this, we
must recognize that we are writing programs as much to be read by other
engineers as to be executed on a computer.

Software
Engineering

and AI

This social dimension of programming is most strongly evident in the
discipline of software engineering. We feel it unfortunate that many
textbooks on software engineering emphasize the formal aspects of
documentation, program design, source code control and versioning,
testing, prototyping, release management, and similar engineering practices,
and downplay the basic source of their value: to insure efficient, clear
communication across a software development team.

Both of this book’s authors work in research institutions, and have
encountered the mindset that research programming does not require the
same levels of engineering as applications development. Although research
programming may not involve the need for tutorials, user manuals and
other artifacts of importance to commercial software, we should not forget
that the goal of software engineering is to insure communication. Research
teams require this kind of coordination as much as commercial
development groups. In our own practice, we have found considerable
success with a communications-focused approach to software engineering,
treating documentation, tests, versioning, and other artifacts as tools to
communicate with our team and the larger community. Thinking of
software engineering in these terms allows us to take a “lightweight”
approach that emphasizes the use of software engineering techniques for
communication and coordination within the research team. We urge the
programmer to see their own software engineering skills in this light.

Prototyping Prototyping is an example of a software engineering practice that has its
roots in the demands of research, and that has found its way into
commercial development. In the early days, software engineering seemed
to aim at “getting it right the first time” through careful specification and
validation of requirements. This is seldom possible in research
environments where the complexity and novelty of problems and the use
of programming as a tool for thinking precludes such perfection.
Interestingly, as applications development has moved into interactive
domains that must blend into the complex communication acts of human
communities, the goal of “getting it right the first time” has been rejected
in favor of a prototyping approach.

436 Part V: Model Building and the Master Programmer

We urge the reader to look at the patterns and techniques presented in this
book as tools for building programs quickly and in ways that make their
semantics clear – as tools for prototyping. Metalinguistic abstraction is the
most obvious example of this. In building complex, knowledge-based
systems, the separation of inference engine and knowledge illustrated in
many examples of this book allows the programmer to focus on
representing problem-specific knowledge in the development process.

Similarly, in object-oriented programming, the mechanisms of interfaces,
class inheritance, method extension, encapsulation, and similar techniques
provide a powerful set of tools for prototyping. Although often thought of
as tools for writing reusable software, they give a guiding structure to
prototyping. “Thin-line” prototyping is a technique that draws on these
object-oriented mechanisms. A thin-line prototype is one that implements
all major components of a system, although initially with limited
complexity. For example, assume an implementation of an expert-system
in a complex network environment. A thin-line prototype would include all
parts of the system to test communication, interaction, etc., but with
limited functionality. The expert system may only have enough rules to
solve a few example problems; the network communications may only
implement enough messages to test the efficiency of communications; the
user interface may only consist of enough screens to solve an initial
problem set, and so on.

The power of thin-line prototypes is that they test the overall architecture
of the program without requiring a complete implementation. Once this is
done and evaluated for efficiency and robustness by engineers and for
usability and correctness by end users, we can continue development with a
focused, easily managed cycle of adding functionality, testing it, and
planning. In our experience, most AI programs are built this way.

Reuse It would be nearly impossible to write a book on programming without a
discussion of an idea that has become something of a holy grail to modern
software development: code reuse. Both in industry and academia,
programmers are under pressure, not only to build useful, reliable software,
but also to produce useful, reusable components as a by-product of that
effort. In aiming for this goal, we should be aware of two subtleties.

The first is that reusable software components rarely appear as by-products
of a problem-specific programming effort. The reason is that reuse, by
definition, requires that components be designed, implemented, and tested
for the general case. Unless the programmer steps back from the problem
at hand to define general use cases for a component, and designs, builds,
tests, and documents to the general cases, it is unlikely the component will
be useful to other projects. We have built a number of reusable
components, and all of them have their roots in this effort to define and
build to the general case.

The second thing we should consider is that actual components should not
be the only focus of software reuse. Considerable value can be found in
reusing ideas: the idioms and patterns that we have demonstrated in this
book. These are almost the definition of skill and mastery in a programmer,
and can rightly be seen as the core of design and reuse.

 Chapter 32 The Master Programmer 437

 32.4 Final Thoughts

 It has been our goal to give the reader an understanding of, not only the
power and beauty of the programming languages Prolog, Lisp, and Java,
but also of the intellectual depth involved in mastering them. This mastery
involves the languages syntax and semantics, the understanding of its
idioms of use, and the ability to project those idioms into the patterns of
design and implementation that define a well-written program.

In approaching this goal, we have focused on common problems in
Artificial Intelligence programming, and reasoned our way through their
solution, letting the idioms of language use and the patterns of program
organization emerge from that process. The power of idioms, patterns, and
other forms of engineering mastery is in their application, and they can
have as many realizations, as many implementations as there are problems
that they may fit. We hope our method and its execution in this book have
helped the student understand the deeper reasons, the more nuanced
habits of thinking and perception, behind these patterns. This is, to
paraphrase Einstein, less a matter of knowledge than of imagination.

We hope this book has added some fuel to the fires of our readers’
imaginations.

